
Development of an Autonomous Navigation
and Manipulation Robot for
Obstacle-Rich Environments

Andrea M. Salcedo-Vázquez, José A. León-Navarro,
Hortencia A. Ramı́rez-Vázquez, José G. Buenaventura-Carreón,

Fernando Antunez-Arnold

Tecnólogico de Monterrey,
Escuela de Ingenierı́a y Ciencias,

Monterrey, Mexico

{asalcedo2702,jantonioleon.irs}@gmail.com,
ha.ramirez@outlook.com,

{jgusbc,fer.antunez02}@hotmail.com

Abstract. This paper presents the development of an advanced autonomous
navigation and manipulation robot specifically designed to operate efficiently
in environments with numerous obstacles. The robot features a differential
drive system, complemented by a camera and LiDAR sensors, which enable
it to identify and locate target objects marked with ArUco codes. Leveraging
advanced navigation algorithms and the Extended Kalman Filter (EKF) for
sensor data fusion, the system achieves high-precision localization and calculates
the target’s position with notable accuracy. During operation, the robot
dynamically plans its path to navigate toward the target while skillfully avoiding
obstacles. Upon reaching the identified object, the robot uses a gripper to
securely grasp the target and transport it to a designated unloading area.
The integration of these functionalities underscores the robot’s capability to
perform complex tasks autonomously, significantly enhancing efficiency and
safety in industrial environments. This research highlights the synergy of
interdisciplinary technologies, combining robotics, sensor fusion, and control
systems. Through rigorous iterative testing, the reliability and practicality of the
system in real-world scenarios were validated. The proposed robotic solution
offers a promising framework for automating tasks in complex environments,
showcasing potential applications in various industries, including logistics and
manufacturing, where precision and adaptability are critical.

Keywords: Differential mobile robot, navigation, manipulation, extended
Kalman filter, optimization, autonomous.

1 Introduction

1.1 State of the Art in Mobile Robots

Mobile robots have significantly advanced, integrating sophisticated hardware and
software to achieve high levels of autonomy and functionality.

49

ISSN 1870-4069

Research in Computing Science 153(11), 2024pp. 49–62; rec. 2024-06-15; acc. 2024-08-17

Some of the most notable examples include Boston Dynamics Atlas, which utilizes
high-performance hardware such as advanced actuators and sensors to perform complex
tasks such as dynamic navigation and manipulation ([6]). Similarly, the TurtleBot series,
commonly used in research and education, leverages ROS (Robot Operating System)
and features hardware like the Intel RealSense camera and powerful processors to
perform tasks such as mapping and human interaction ([10]).

Industrial autonomous mobile robots (AMRs) like KUKA’s KMR iisy and KMP
series incorporate AI and advanced path planning algorithms. These robots are equipped
with high-end sensors, powerful on-board processors, and robust mechanical systems,
enabling them to operate efficiently in dynamic and cluttered environments ([7]). For
example, the KMR iisy includes an industrial-grade LiDAR, multiple cameras, and
high-capacity batteries to support long operational hours.

In contrast, the Puzzlebot used in our research, developed by Manchester Robotics,
operates with more constrained hardware resources. This robot is equipped with a
Nvidia Jetson Nano featuring 2 GB of RAM, a Hackerboard for motor control, a
Raspberry Pi Camera for vision, and a LiDAR sensor for obstacle detection. Despite
these limitations, the Puzzlebot demonstrates the potential for effective autonomous
navigation and manipulation through optimized algorithm implementation.

1.2 Contribution of This Paper

The advancements in mobile robotics are remarkable, but there is a critical challenge
in adapting these sophisticated technologies to operate on less powerful hardware.
This paper addresses this gap by optimizing various algorithms to work effectively
on constrained hardware resources. Specifically, we adapted advanced navigation and
manipulation algorithms to run on a Jetson Nano, a compact and less powerful
computing module, as opposed to the high-performance GPUs typically used in
state-of-the-art systems.

The primary contribution of this research is the demonstration of robust autonomous
navigation and manipulation capabilities on a hardware platform with limited
computational power. By fine-tuning the algorithms for real-time performance and
efficient resource utilization, we showcase a cost-effective approach that broadens
the accessibility and applicability of autonomous mobile robots in various fields,
particularly where high-end hardware is not feasible.

This paper presents the development and implementation of an autonomous mobile
robot equipped with a differential drive system, a camera, and LiDAR sensors. Using
a suite of algorithms, including the Extended Kalman Filter (EKF) for sensor data
fusion, the Bug0 algorithm for obstacle avoidance, and a proportional controller
for path planning. The system’s ability to navigate complex environments, identify
and manipulate objects marked with ArUco codes, and perform tasks autonomously
underscores its potential for industrial applications, particularly in settings requiring
cost-effective and efficient robotic solutions.

By focusing on optimizing software to compensate for hardware limitations,
this research contributes to the advancement of autonomous robotics, enabling the
deployment of capable mobile robots in a wider range of scenarios, including
educational, research, and industrial applications.

50

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

2 Puzzlebot

2.1 Hardware

The Puzzlebot is an educational mobile robot designed for learning and experimentation
in robotics. It features a compact and robust design with dimensions typically measuring
around 22 cm in length, 17 cm in width, and 12 cm in height. This size makes it suitable
for navigating and performing tasks in various environments, from classroom settings
to more complex obstacle courses. (figure 1). The hardware of the Puzzlebot includes
several key components.

– Jetson Nano, a powerful and versatile computing module from NVIDIA. The Jetson
Nano provides the processing power necessary for running complex algorithms and
machine learning tasks, making it possible for the Puzzlebot to perform real-time
image processing and sensor data fusion.

– LiDAR sensor, the Puzzlebot can measure distances to surrounding objects with high
precision. LiDAR works by emitting laser pulses and measuring the time it takes for
the pulses to reflect back from objects, creating a detailed map of the environment.
This sensor is crucial for obstacle detection and avoidance, enabling the robot to
navigate safely through its environment.

– Hackerboard, a versatile microcontroller board that handles lower-level control tasks.
The Hackerboard interfaces with various sensors and actuators, including the motors
that drive the robot’s wheels. It ensures smooth and precise control of the robot’s
movements, executing commands from the main processing unit (Jetson Nano) and
managing the real-time operation of the robot’s hardware components.

2.2 Software

On the software side, the Puzzlebot runs on an environment composed by
different platforms:

– Linux-based operating system, leveraging the powerful capabilities of
the Jetson Nano.

– ROS (Robot Operating System), which provides a flexible framework for writing
robot software. ROS offers tools and libraries for handling sensor input, motion
control, and inter-component communication, streamlining the development process.

– For Simulation, we implemented different softwares as Gazebo and RViz:
– Gazebo, a robust robotics simulator that allows us to create realistic 3D

environments where the Puzzlebot can be tested. Gazebo helps in testing and
refining algorithms before deploying them on the physical robot, reducing
development time and ensuring safer initial trials.

– RViz, a visualization tool that works with ROS to visualize sensor data and
the robot’s state in real-time. RViz enables us to monitor the robot’s perception
of its environment and its planned path, providing valuable insights into its
behavior and performance.

51

Development of an Autonomous Navigation and Manipulation Robot ...

Research in Computing Science 153(11), 2024ISSN 1870-4069

Fig. 1. Puzzlebot an gripper.

3 Mathematical Modeling

3.1 Reference Frames Definition

To have all the elements of the system in the same coordinate frame, we define our fixed
frame, which in this case we call ”odom”. We perform a transform from the robot’s
base to ”odom” to obtain the coordinates of the Puzzlebot with respect to the ”odom”
reference frame. Similarly, we need to perform a transform from the LiDAR to the
robot’s base. This way, the point cloud shown by the LiDAR moves as the robot moves,
allowing us to map our environment and determine the distances to obstacles. Finally,
we perform a transform from Aruco to the center of the camera and from the camera to
the base. This allows us to know the position of the Aruco with respect to the robot and
its location within the ”odom” frame.

3.2 Kinematic Model of a Differential Robot

A differential drive robot has two independently driven wheels mounted on either side
of the robot, which allows it to move and steer by varying the relative speeds of the
wheels. The kinematic model describes the relationship between the wheel speeds and
the robot’s overall movement.

Equations. The linear and angular velocities of the robot are related to the wheel
velocities as follows:

v =
vr + vl

2
= r

wr + wl

2
, (1)

w =
vr − vl

2
= r

wr − wl

l
. (2)

The robot’s pose (position and orientation can be represented by (x, y, θ), where:

– (x, y) is the position of the robot in the plane odom.

– θ is the orientation of the robot with respect to the x-axis of odom.

52

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

Kinematic Equations. The Kinematic equations that describes the Puzzlebot
motion are:

ẋ = v cos(θ), (3)

ẏ = v sin(θ), (4)

θ̇ = w. (5)

These equations can be integrated over time to simulate the robot’s trajectory given
the angular wheel velocities wr and wl using the robot encoders. Getting as result:

xk = xk−1 + v cos(θ)× dt, (6)

yk = yk−1 + v sin(θ)× dt, (7)

θk = θk−1 + w × dt. (8)

4 Navigation

4.1 Robot Navigation Algorithms

For the robot’s navigation, we used two main algorithms: proportional controller to
reach a set point, and bug 0 to avoid obstacles [4].

– Proportional Controller. We utilized a proportional controller to facilitate
movement from point A to point B. This controller regulates the Puzzlebot’s linear
and angular velocities by calculating the distance an angle error between the starting
an destination points. The P controller ensures that the robot can efficiently reach its
target by adjusting it speeds based on the proximity and orientation to the goal.

– Bug0. The Bug0 algorithm is activated when the Puzzlebot detects an obstacle, such
as a wall, using its LiDAR sensor at a minimum distance:

Algorithm 1 Bug 0 algorithm.
if Wall then

Turn 90 degrees
while not wall do Follow Wall

if angle aligns with the target point then
Go to point
break

end if
end while

end if

53

Development of an Autonomous Navigation and Manipulation Robot ...

Research in Computing Science 153(11), 2024ISSN 1870-4069

4.2 State Machine

A state machine was designed to control the Puzzlebot actions to guide its behavior
through different tasks:

– Start/Stop: The robot starts in the initial state, waiting for the ID of the cube and the
base where it should be dropped off.

– Search and pick up the cube: Upon receiving the cube ID and base location,
the robot transitions to searching for the cube. Once the cube is found, the robot
approaches and grabs it, switching to the localization state.

– Localization and Navigation: In the localization state, the robot activates the P
controller to navigate towards the target point. If a wall is encountered, the Bug0
algorithm is triggered, guiding the robot around obstacles until it is aligned to move
directly towards the point.

– Go to base: Upon reaching the desired point, the robot changes to the state of
searching for the base. Once the Aruco marker identifying the base is detected, the
robot approaches it, places the cube, and returns to the initial state.

5 Localization

5.1 Odometry

Odometry is a method used to estimate the position and orientation of a mobile robot by
tracking the motion of its wheels or other actuators. This technique involves measuring
the distance traveled by each wheel and using these measurements to calculate the
robot’s change in position over time. By continuously monitoring the wheel encoder
data, the robot can estimate its current position and orientation as it moves through
the environment. However, odometry has its challenges; it is prone to cumulative
errors due to wheel slippage, uneven surfaces, and other factors that can introduce
inaccuracies over time.

5.2 Equations

To calculate the odometry pose we use the equations 6, 7 and 8. These equations
allow us to update the robot’s position and orientation over time. Additionally, we
utilized ROS2 odom message to publish the odometry data to other nodes. This enables
real-time visualization in RViz, where the angle is sent in a quaternion format to ensure
accurate orientation representation.

5.3 Map Based Localization

For localization, we relied on map-based techniques to determine the robot’s position
and orientation using odom frame as out map. We match the sensor data as the LiDAR
distances or the ARUCO position to accurately localize itself and navigate effectively
in its environment.

54

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

To mitigate these errors, odometry is often combined with other sensors and
algorithms, such as the Extended Kalman Filter (EKF) and LiDAR, to improve
the overall accuracy of the robot’s position estimate. This sensor fusion approach
leverages the strengths of each sensor, providing a more robust and reliable navigation
solution. The integration of odometry with the EKF and other sensory inputs allows
the Puzzlebot to navigate autonomously with high precision, even in complex and
dynamic environments.

6 Extended Kalman Filter (EKF)

The implementation of the EKF in our system enhances the robot’s ability to navigate
autonomously and avoid obstacles with high precision. By continuously refining the
state estimate, the EKF ensures that the robot’s control algorithms receive accurate
and up-to-date information, enabling smooth and efficient navigation. This makes
the EKF an essential component in achieving robust performance in complex and
dynamic environments [3].

6.1 System Linearization and Covariance Matrix

To enhance the accuracy of our odometry, we performed a linearization of the system.
This involves approximating the nonlinear system around a specific operating point to
simplify the analysis and control design.

Linearization Process. The kalman filter is a very powerful tool optimal for linear
systems with gaussian noise. Hoewever in real world there are many non-linear systems,
such as the differential mobile robots, which is whu we must linearize the system to
apply the kalman filter. The linearization of our system was made by calculating the
Jacobian matrices of our systems. We calculate two matrices, one for the position of
the robot in the axis x, y and z (equation 10) and another one for the linear and angular
position (equation 11) making partial derivates of the system with respect to each of the
system’s states. In the equation 12 we can see the linearized model:

ż =

ẋ = v cos(θ),

ẏ = v sin(θ),

θ = w,

(9)

A =

dV Cos(θ)

dx

dV Cos(θ)

dy

dV Cos(θ)

dθ

dV Sin(θ)

dx

dV Sin(θ)

dy

dV Sin(θ)

dθ

dw

dx

dw

dy

dw

dθ

=

0 0 −V Sin(θ)

0 0 V Cos(θ)

0 0 0

, (10)

55

Development of an Autonomous Navigation and Manipulation Robot ...

Research in Computing Science 153(11), 2024ISSN 1870-4069

B =

dV Cos(θ)

dv

dV Cos(θ)

dw

dV Sin(θ)

dv

dV Sin(θ)

dw

dw

dv

dw

dw

=

Cos(θ) 0

Sin(θ) 0

0 1

, (11)

ż =

0 0 −V Sin(θ)

0 0 V Cos(θ)

0 0 0

x

y

θ

+

Cos(θ) 0

Sin(θ) 0

0 1

 v

w

. (12)

Covariance Matrix Calculation. The covariance matrix Σk is crucial for
estimating the uncertainty in the robot’s position and orientation. It evolves over time
based on the system dynamics and measurement updates. It calculation is defined by:

Σk = HkΣk−1H
T
k +Qk, (13)

where:

– Σk is a 3x3 covariance matrix:
σxx σxy σxθ

σyx σyy σyθ

σθx σθy σθθ

. (14)

– Hk is a 3x3 Linear model Jacobian of the robot:
1 0 −δt · vk · sin(µθ,k−1)

0 1 δt · vk · cos(µθ,k−1)

0 0 1

. (15)

– Qk matrix is the nondeterministic error matrix, given by:

Qk = ∇wk
·Σδ,k · ∇T

wk
, (16)

where:

Σδ,k =

[
kr|wr,k| 0

0 kl|wl,k|

]
, (17)

56

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

∇w,k =
1

2
rδt

cos(sθ,k−1) cos(sθ,k−1)

sin(sθ,k−1) sin(sθ,k−1)

2

l
−2

l

. (18)

6.2 Kalman Filter Algorithm and Equations

For the implementation of the kalman filter, we followed these steps:

– Position Estimation: Initially, we estimated the position using odometry calculated
from the encoder data. This provided us with an initial estimate of the robot’s location
and we called it µ̂k.

– Linearized model and uncertainty: Calculate the linearized model (equation 15) to
calculate the uncertainty propagation which is calculated by:

Σ̂k = Hk ·Σk−1 ·HT
k +Qk, (19)

where Qk is the motion model covariance matrix

– Observation model: If the Puzzlebot could detect the Aruco marker with the camera,
we calculated the distance and angle from the Puzzlebot to the Aruco marker using
the camera data which will be our assumed measurements ẑ. And then we construct
the observation model by calculating the distance and angle from the puzzlebot to
the aruco marker using the aruco and robot positions:

ẑk =

 ẑp,k

ẑθ,k

 =

√
δx2 + δy2

atan 2(δy, δx)− ŝθ,1

. (20)

– Observation Model Linearization: The observation model was linearized to
facilitate the estimation process. This step involved computing the Jacobian matrix
of the observation model:

Gk =

− δx
√
p

− δy
√
p

0

δy

p
−δx

p
−1

. (21)

– Uncertainty Propagation and Kalman Gain Calculation: We measured the
propagation of uncertainty and calculated the Kalman gain. The Kalman gain
determines how much weight is given to the prediction and observation updates in
the estimation process.

57

Development of an Autonomous Navigation and Manipulation Robot ...

Research in Computing Science 153(11), 2024ISSN 1870-4069

– Measurement Uncertainty:

Zk = Gk · Σ̂k ·GT
k +Rk, (22)

where, Rk is the observation model covariance matrix.

– Kalman Gain:
Kk = Σ̂k ·GT

k · Z−
k 1. (23)

Position and Covariance Estimation Finally, we used the Kalman filter to estimate
the position and covariance of the Puzzlebot. This iterative process helped us reduce
uncertainty and improve the accuracy of the estimated position.

– Robot position:
µk = µ̂k +Kk(zk − ẑk). (24)

– Covariance:
Σk = (I −Kk ·Gk) · Σ̂k. (25)

7 Vision Algorithm

The use of ArUco markers involves attaching them to target objects that the Puzzlebot
needs to identify, approach, and manipulate. By leveraging the ArUco detection library,
the robot can accurately determine the position of these markers in real-time, enabling
it to perform complex tasks such as picking up and placing objects at designated
locations. This technology enhances the robot’s ability to interact with its environment
in a controlled and predictable manner, ensuring successful task execution.

7.1 Algorithm

For Aruco detection, we utilized a ROS2 library called ros aruco opencv. This library
provides us with the Aruco ID and the position (x, y, z, theta) relative to the camera
frame. To integrate this information into our navigation system, we initially perform
a coordinate transformation from the camera frame to the base link and then to the
odometry frame. This allows us to determine the Aruco’s position in the map coordinate
system. Subsequently, we activate the proportional controller to guide the Puzzlebot
towards the Aruco marker, positioning it for cube manipulation tasks.

We used different ArUco markers for different purposes, such as identify different
objects and places or to apply kalman filter so the robot’s position is more precise. The
ArUcos we used are generated in a 4x4 dictionary and a size of 45 mm. We used ArUco
ids 1, 2 and 3 to identify the stations where the object must be dropped, the id 6 to
identify the cube the robot must grab and the id 7 to apply kalman filter.

58

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

8 Manipulator

Drawing inspiration from various online resources and videos, we a suitable gripper
model on Thingiverse designed for robots participating in the FIRST Tech Challenge
competition. The chosen model served as a foundational template, which we adapted
to align with the specific requirements and constraints of the tests. Adjustments were
made to accommodate the dimensions and shapes of the ArUco markers, ensuring a
snug and secure grip during transportation and positioning tasks.

9 Results

This section presents the results of our autonomous navigation and manipulation robot’s
performance, comparing its behavior in simulated and real-world environments. Our
primary focus is on the robot’s stopping distance and the implications of the differences
observed due to varying processing capabilities.

9.1 Simulation Performance

In the simulated environment, we employed a high-performance Nvidia RTX 4060 Ti
GPU with 4352 CUDA cores and 16 GB of RAM. This powerful setup allowed for
rapid and precise computations, enabling the robot to stop accurately at a distance of 30
centimeters from detected obstacles. The simulation environment, managed using ROS
2 and Gazebo, provided a controlled setting where sensor data processing and algorithm
execution could occur without significant latency.

9.2 Real-world Performance

Conversely, the real-world tests were conducted using a Jetson Nano with 2 GB of RAM
and a GPU featuring only 128 cores. This considerable disparity in processing power
impacted the robot’s performance, most notably in its stopping distance. The real-world
robot consistently crash into the wall and we need to adjust the values so it stopped at
30 centimeters from obstacles, highlighting a discrepancy from the simulation results.

9.3 Analysis of Discrepancies

The observed difference in stopping distances—30 centimeters in simulation versus 30
centimeters in the real world—can be attributed to several factors:

– Processing Capability: The Jetson Nano’s limited processing power affected
real-time sensor data processing and decision-making speed. The RTX 4060 Ti’s
superior computational capacity allowed for faster and more precise calculations,
resulting in a more accurate stopping response.

– Sensor Data Throughput: In the simulation, data throughput and processing
are optimized by the high-performance GPU, reducing latency in sensor fusion
and decision-making processes. In contrast, the Jetson Nano’s limited throughput
capacity led to slower data processing, contributing to the reduced stopping distance.

59

Development of an Autonomous Navigation and Manipulation Robot ...

Research in Computing Science 153(11), 2024ISSN 1870-4069

Fig. 2. Result of the tests.

– Algorithm Efficiency: The real-world implementation faced practical challenges
such as sensor noise and physical limitations, which were less pronounced
in the controlled simulation environment. These real-world factors necessitated
adjustments to the robot’s algorithms, further affecting its stopping distance.

– Environmental Variability: The real-world environment introduces variability in
sensor readings due to factors such as lighting conditions, surface textures, and
physical obstacles, which are typically idealized in simulations.

9.4 Performance Implications

The discrepancy between the simulation and real-world performance underscores
the importance of considering hardware limitations and environmental factors when
deploying robotic systems. While simulations provide valuable insights and a controlled
platform for initial algorithm testing, real-world trials are crucial for fine-tuning and
validating the robot’s performance. Once we identified the discrepancies between the
performance in simulation and in the real-world scenarios, we decided to optimize
the sensor usage on the robot. Instead of activating all sensors simultaneously, we
configured the robot to utilize only the necessary sensors for each specific state of
its operation. This approach ensured that the robot could efficiently perform its tasks
without overwhelming its limited processing capacity.

Additionally, we reduced the data processing load by minimizing the number
of messages being sent and received. By streamlining the communication and
focusing on essential data, we achieved a more efficient and responsive system,
enhancing the robot’s overall performance in real-world applications. Furthermore, the
implementation of the Kalman filter and ArUco marker detection significantly improved
the precision of the real robot. This enhancement was evident when comparing the
simulation results with the real-world outcomes, both before and after optimization 2.

10 Resources

– Demonstrative video (Puzzlebot final challenge): youtu.be/YZyWaMJPywo?si=ayve
Fs6nnmhTK7tX

60

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

– GitHub Repository (Puzzlebot algorithms): github.com/soyhorteconh/Puzzlebot Lid
ar ROS1 ROS2

– Flow Diagrams Folder: drive.google.com/drive/folders/1k8Eu3JkrMkmCKipy-2vJ
NTDl004k5s8H?usp=sharing

11 Conclusions

The research presented has successfully developed an autonomous navigation and
manipulation robot tailored for obstacle-rich environments. By integrating advanced
sensors, such as LiDAR and cameras, with robust navigation algorithms, the robot
demonstrated efficient and precise operations in complex scenarios.

The use of the Extended Kalman Filter significantly improved the accuracy of
the robot’s localization, enhancing its ability to navigate and manipulate objects. The
implementation of ArUco markers for object identification and target localization
proved to be effective, allowing the robot to perform tasks with a high degree
of accuracy. Additionally, the differential drive system, combined with the Bug0
and proportional control algorithms, enabled reliable obstacle avoidance and target
acquisition. This study underscores the potential of autonomous robots in industrial
applications, where they can enhance operational efficiency and safety.

The integration of interdisciplinary technologies and the iterative refinement of
both hardware and software components were crucial to the project’s success. The
findings from this research contribute to the broader field of robotics, offering
insights into the development of more advanced and capable autonomous systems for
future applications.

References

1. Borenstein, J., Everett, H. R., Feng, L., Wehe, D.: Mobile robot positioning: Sensors and
techniques. Journal of Robotic Systems, vol. 14, no. 4, pp. 231–249 (1997)

2. Dudek, G., Jenkin, M.: Computational principles of mobile robotics. Cambridge University
Press (2010)

3. Li, Q., Li, R., Ji, K., Dai, W.: Kalman filter and its application. In: Proceedings of the 8th
International Conference on Intelligent Networks and Intelligent Systems, pp. 74–77 (2015)
doi: 10.1109/icinis.2015.35

4. Lumelsky, V. J., Stepanov, A. A.: Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, vol. 2, no. 1–4,
pp. 403–430 (1987) doi: 10.1007/bf01840369

5. Luo, R., Kay, M.: Multisensor integration and fusion in intelligent systems. IEEE
Transactions on Systems, Man, and Cybernetics, vol. 19, no. 5, pp. 901–931 (1989)
doi: 10.1109/21.44007

6. Parker, L. E.: Current state of the art in distributed autonomous mobile robotics. Distributed
Autonomous Robotic Systems, pp. 3–12 (2000) doi: 10.1007/978-4-431-67919-6 1

7. Sharma, N., Pandey, J. K., Mondal, S.: A review of mobile robots: Applications and future
prospect. International Journal of Precision Engineering and Manufacturing, vol. 24, no. 9,
pp. 1695–1706 (2023) doi: 10.1007/s12541-023-00876-7

8. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer, 2nd Ed. (2016)

61

Development of an Autonomous Navigation and Manipulation Robot ...

Research in Computing Science 153(11), 2024ISSN 1870-4069

9. Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D.: Introduction to autonomous mobile robots.
MIT Press (2011)

10. Tagliavini, L., Colucci, G., Botta, A., Cavallone, P., Baglieri, L., Quaglia, G.: Wheeled
mobile robots: State of the art overview and kinematic comparison among three
omnidirectional locomotion strategies. Journal of Intelligent and Robotic Systems, vol. 106,
no. 3 (2022) doi: 10.1007/s10846-022-01745-7

11. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)

62

Andrea M. Salcedo-Vázquez, José A. León-Navarro, Hortencia A. Ramírez-Vázquez, et al.

Research in Computing Science 153(11), 2024 ISSN 1870-4069

